Note

Gas-liquid chromatography of partially methylated alditol acetates on capillary columns of OV-17 and OV-225

ELIANA BARRETO-BERGTER*, LAWRENCE HOGGE, AND PHILIP A. J. GORIN

Prairie Regional Laboratory, National Research Council, Saskatoon S7NOW9, Saskatchewan (Canada)
(Received January 7th, 1981; accepted for publication, April 1st, 1981)

Accurate methylation analyses became possible in 1967 with the availability of the g.l.c.—m.s. method to characterize and estimate O-methylalditol acetates¹. The liquid phase ECNSS-M was the one most frequently used in the next 6 to 7 years². Other liquid phases useful for separations of sugars³ include silicone OV-225 (ref. 4), polyphenyl ether⁵, 1,4-butanediol succinate⁶, OV-275-XF1150 (ref. 7), and Apiezon greases^{8,9}. The latter were considered to be superior to ECNSS-M and OV-225 for separation of O-methyl acetates of galactitol, rhamnitol, arabinitol, and xylitol, but not all possible isomers were examined.

The present investigation concerns the characterization, by g.l.c., of acetates of O-methyl derivatives of galactitol, glucitol, and mannitol that could arise from microbial polysaccharides. A system of two capillary columns, one coated with OV-17 and the other with OV-225, was used in parallel and separate analyses. The utility of this combination resulted from a series of methylation analyses that employed initially a conventional ECNSS-M column¹⁰, then capillary chromatography¹¹ using OV-17, and finally, parallel experiments with capillary columns¹² of OV-17 and OV-225. Since the last-cited method appears to offer advantages over those previously used, the comparative retention times of most of the O-methylalditol acetates arising from mannopyranosyl, glucopyranosyl, galactofuranosyl, and galactopyranosyl residues have now been measured (Table I).

The comparative retention times of O-methylalditol acetates on capillary columns of OV-225 resemble those obtained with a conventional column¹³; however, better peak separations were frequently obtained with the capillary system. For example, a complete separation of peaks of 2,3,4,6-tetra-O-methyl-glucitol and -mannitol acetate was obtained, whereas they partially coalesced in the conventional system¹³. The advantage of the OV-17 capillary column lies in the order in which compounds emerge (which differs from that of OV-225), and in its superior properties

^{*}N.R.C. Research Associate 1978–1980. N.R.C.C. No. 19593. Present address: Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro RJ 21491 (Brazil).

148 NOTE

TABLE I RELATIVE RETENTION TIMES OF O-METHYLHEXITOL ACETATES IN CAPILLARY COLUMNS OF OV-17 AND OV-225

Position of methyl groups	T_M values							
	Mannitol derivatives		Glucitol derivatives		Galactitol derivatives			
	OV-17	OV-225	OV-17	OV-225	OV-17	OV-225		
2,3,4,6	1.00	1.00	1.00	1.02	1.11	1.13		
2,3,5,6					1.04	1.07		
2,3,6	1.55	1.79	1.61	2.02	1.58	1.88		
3,4,6	1.44	1.64	1.46	1.65	1.68	1.91		
2,4,6	1.63	1.71	1.53	1.64	1.72	1.78		
2,3,4	1.61	1.89	1.61	1.87	1.93	2.38		
2,3,5					1.93	2.28		
3,5,6					1.65	1.67		
2,5,6					1.57	1.70		
2,6	2,21	2.61	2.27	2.87	2.32	2.67		
4,6	2.21	2.52	2.29	2.90	2.37	2.72		
3,6	2.36	2.97	2.38	3.03	2.50	3.07		
2,3	2.48	3.21	2.60	3.63	2.70	3.78		
3,4	2.48	3.52	2.52	3.51	3.02	4.36		
2,4	2.81	3.60	2.63	3.41	3.16	4.05		

^aRelative to that of 2,3,4,6-tetra-O-methylmannitol diacetate ($T_{\rm M}$ 1.00).

for quantitative determination. With OV-225, the peak response tended to be smaller for the di-O-methyl as compared with those of the tetra-O-methyl derivatives.

With the present system, the four tri-O-methylglucitol acetates that may arise from glucopyranosyl units can be completely determined. On OV-17, the 2,3,6-and 2,3,4-isomers cochromatograph, but are distinguishable from the 3,4,6- and 2,4,6-isomers, which are resolved¹¹. A different pattern is obtained with OV-225 in the capillary (and conventional¹³) system, the 3,4,6- and 2,4,6-tri-O-methyl derivatives being unresolved, but distinct from the 2,3,6- and, in turn, the 2,3,4-isomer. Thus, it appears that resolution of all four isomers is feasible by use of a correct blend of OV-17 and OV-225.

Galactomannans from Aspergillus spp. contain a $(1\rightarrow 6)$ -linked α -D-mannopyranosyl main-chain, partially substituted by chains of $(1\rightarrow 5)$ -linked β -D-galactofuranosyl residues. The resulting methylation mixture contained acetates of 2,3,4-tri-O-methylmannitol and 2,3,6-tri-O-methylgalactitol, which were not resolvable¹³ on ECNSS-M and required neopentylglycol sebacate in a separate experiment¹⁰. A separation is now possible with a capillary column of OV-17 (but not OV-225; see Table I). However, when such a galactomannan contains glycogen as a contaminant, it is necessary to use OV-225 in order to separate¹² 2,3,6-tri-O-methylgalactitol acetate from the peak consisting of acetates of 2,3,6-tri-O-methylgalactitol and 2,3,4-tri-O-methylmannitol.

NOTE 149

TABLE II $T_{
m M}$ values of components of standard mixtures of O-methylhexitol acetates

Position of	T _M value		Position of methyl groups and parent hexose	T _M value			
methyl groups and parent hexose	OV-17	OV-225		OV-17	OV-225		
Group I			Group 4				
2,3-Glc	2.60	3.63	3,4,6-Man	1.44	1.64		
3,4-Glc	2.52	3.51	3.4.6-Glc	1.46	1.66		
2.4-Glc	2.63	3.41	2,4,6-Glc	1.53	1.64		
2,4-Man	2.81	3.60	2,3,6-Man	1.55	1.79		
2,3-Man	2.48	3.21					
3,4-Man	2.48	3.52					
Group 2			Group 5				
2,3,6-Gal	1.58	1.88	4,6-Gal	2.37	2.72		
2,4,6-Man	1.63	1.71	3,6-Glc	<i>2.38</i>	3.03		
2,3,6-Glc	1.61	2.02	3,6-Man	2.36	2.97		
2,4,6-Gal	1.72	1.78	4,6-Glc	2.29	2.90		
2,3,4-Man	1.61	1.89	•				
2,3,4-Glc	1.61	1.87	Group 6				
3,4,6-Gal	1.68	1.91	2,6-Gal	2.32	2.67		
Group 3			2,6-Glc	2.27	2.87		
3,5,6-Gal	1.65	1.67	2,6-Man	2.21	2.61		
2,3,6-Gal	1.60	1.88	4,6-Man	2.21	2.52		
2,5,6-Gal	1.57	1.70	Group 7				
5,6-Gal	2.16	2.30	2,4-Gal	3.16	4.05		
-			3,4-Gal	3.02	4.36		

The retention times of O-methylhexitol acetates, summarized in Table I, are expressed relative to that of 2,3,4,6-tetra-O-methylmannitol acetate ($T_{\rm M}$ 1.00). A difference of $T_{\rm M}$ 0.01–0.02 between materials with $T_{\rm M}$ 1.0–1.5 signifies that they are separable. Compounds having longer retention times ($T_{\rm M}$ 1.5–4.5) may be resolved where their retention times differ by $T_{\rm M}$ 0.02–0.03. The resolution of the method was established by standards whose components had $T_{\rm M}$ values close to each other; different orders of peak emergence occurring with capillary columns of OV-17 and OV-225 were observed (see Table II). Unresolved acetates in seven standard mixtures for each column are italicized. The components of the mixtures were chosen because they had closely related retention-times.

EXPERIMENTAL

Analyses were performed with a Model 4000 Finnigan g.l.c.-m.s. unit, interfaced with an Incos 2300 Data System. Electron-impact spectra¹³ were obtained repetitively every 2 s, scanning from m/z 40 to 420. G.l.c. was performed in columns (0.25 mm i.d. \times 30 m), one coated with OV-17 (J and W Scientific, 11505 Douglas Road, Rancho Cordova, CA 95670), and the other with OV-225 (Chrompack Canada,

150 NOTE

R.R. 2, Blenheim, Ontario NOP 1AO). Injections were made in the splitless mode at 50° in order to obtain the "Grob solvent effect"¹⁴, and the elution was quickly programmed (40°/min) to 182° (hold). The carrier gas was helium with a linear velocity of 22 cm/s.

REFERENCES

- 1 H. BJÖRNDAL, B. LINDBERG, AND S. SVENSSON, Acta Chem. Scand., 21 (1967) 1801-1804.
- 2 G. G. S. DUTTON, Adv. Carbohydr. Chem. Biochem., 30 (1974) 9-110.
- 3 H. PAROLIS AND D. McGARVIE, Carbohydr. Res., 62 (1978) 363-367,
- 4 J. LÖNNGREN AND Å. PILOTTI, Acta Chem. Scand., 25 (1971) 1144-1145.
- 5 R. G. Brown and B. Lindberg, Acta Chem. Scand., 21 (1967) 2383-2389.
- 6 Y.-M. CHOY, G. G. S. DUTTON, K. B. GIBNEY, S. KABIR, AND J. N. C. WHYTE, J. Chromatogr., 72 (1972) 13-19.
- 7 A. G. DARVILL, D. P. ROBERTS, AND M. A. HALL, J. Chromatogr., 115 (1975) 319-324.
- 8 Y.-M. CHOY AND G. G. S. DUTTON, Can. J. Chem., 52 (1974) 684-687.
- 9 D. M. BOWKER AND J. R. TURVEY, J. Chem. Soc., C, (1968) 983-989.
- 10 E. BARRETO-BERGTER, L. R. TRAVASSOS, AND P. A. J. GORIN, Carbohydr. Res., 86 (1980) 273-285.
- 11 E. BARRETO-BERGTER, C. R. CAMARGO, L. R. HOGGE, AND P. A. J. GORIN, Carbohydr. Res., 82 (1980) 366-371.
- 12 E. BARRETO-BERGTER, L. R. TRAVASSOS, AND P. A. J. GORIN, Carbohydr. Res., 95 (1981) 205-218.
- 13 P.-E. JANNSON, L. KENNE, H. LIEDGREN, B. LINDBERG, AND J. LÖNNGREN, Chem. Commun., Univ. Stockholm, (1976) No. 8.
- 14 K. GROB AND K. GROB, JR., J. Chromatogr., 94 (1974) 53-64.